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We take the view that everything that is known about a physical system can be 
described by a "stochastic entity" (~ ,  A), which consists of  a "manua l "  d of  
experiments that can be performed on the system, and a set A of  possible 
stochastic states (probability measures) on the logic of  the manual.  We next 
consider what happens  when new information about the system is learned and 
describe precisely how one then obtains a new stochastic entity more elaborate 
than  the first. Finally, we show that as information about the system continues 
to grow, the increasingly elaborate stochastic entities describing the system 
necessarily acquire mathematical  properties often assumed for mathematical  
convenience in papers on quan tum mechanics.  

1. I N T R O D U C T I O N  

Foulis and Randall  have introduced the manual  as a basic structure 
in the operational approach to quantum mechanics (Foulis et aL, 1983; 
Foulis and Randall, 1981a,b, 1978). One realization of a manual  is as a 
prescribed set of  experiments, which may be performed to obtain informa- 
tion about a physical system. Given one manual,  one might wish for a more 
elaborate manual  to learn more about the system.-In this paper  we are 
concerned with describing an order relation which reflects an order of  
knowledge about a physical system. 

Our basic structure is a stochastic entity (M, A) consisting of a manual  
and a nonempty  convex set of  states A c ~ ( I / (M))  (Randall and Foulis, 

1983), where H(~r is the operational logic of  M (Foulis et al., 1983). We 
define a partial ordering on a set ~ of  stochastic entities and define an 
"ul t imate" stochastic entity as a limit of  an inductive subset of  ~ in a 
manner  suggested by Fischer and Rfittimann (1978a). The careful choice 
this subset is based on the method of forcing discovered by Paul Cohen 
(1966). 
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Ultimate stochastic entities represent "ultimate knowledge" about phy- 
sical systems. Such entities satisfy many properties and give new impetus 
to investigations that had taken these properties as ad hoc assumptions. In 
a paper to follow we shall connect these stochastic entities to physical 
entities in the sense of Foulis et al. (1983). 

2. P R E L I M I N A R I E S  

We shall assume that the reader is familiar with the notions of a manual 
M and its operational logic II(M) as they are defined in Foulis et al. (1983). 
Throughout this paper we assume that every manual M is orthocoherent, 
so that II(M), together with the usual order relation and orthocomplementa- 
tion, is an orthomodular poset (Riittimann, 1984). In the sequel we shall 
make use of the following, which are explained in Rfittimann (to appear) 
with more detail than we shall supply here. 

If  (P, -<, ') is any orthomodular poset, then we refer to a probability 
measure on P as a stochastic state on P, and we denote by [~(P) the set 
of all stochastic states on P. Let (P, -<, ') be an orthomodular poset and A 
a nonempty, convex subset o f f l (P ) .  We denote by W(P) the linear subspace 
of R P (R = the  reals) consisting of all measures on P, and we denote 
V(A) := l in(A)c  W(P).  We organize V(A) into a base-norm space with A 
as a base for the generating cone. We denote by V(A)* the Banach dual of 
base-norm space V(A) and organize V(A)* into an order unit norm space. 
We denote the order unit by I(A), and the order unit interval by [0, I(A)]. 
For q c P, a map e(A)(q): V(A)--> R is defined by e(A)(q)( /z) :=/z(q) ,  and 
e(A): P--> [0, I(A)] is called the evaluation map. For q c P, we denote fq := 
e(A)(q). 

If M and ~ are manuals, then a morphism from M to ~ is a map 
~p:[_JM~(._J~ such that if E ~ M ,  then ~(E) :=U{q~(x ) ]x~E}c~ .  A 
morphism ~ is called strict if for all x, y ~ UM, x.Ly if and only if ~(x)_L~(y). 
We denote by Moro(M, ~ )  the set of strict morphisms from M to ~. Note 
that the terminology we are using here is that of Fischer and Rfittimann 
(1978a). What we are calling "strict morphisms" are called "outcome- 
preserving, operation-preserving, faithful conditionings" in Foulis and Ran- 
dall (1978), where morphisms between manuals were first introduced in 
detail. 

Strict morphisms can be "lifted" to logics. Let M, ~ be manuals and 
suppose ~o c Moro(M, ~ ) .  Denote by ~ the map from II(M) to FI(~) defined 
by (#(p(A))=p(~0(A)). It is not difficult to verify that ~ is well defined. 
Furthermore, it can be verified without difficulty that ~ preserves "o p "  
(Foulis and Randall, 1983) and set inclusion, so that ~ preserves the 
implication relation <- on manuals (Foulis and Randall, 1983). From this 
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one shows easily that ff is an order-preserving map between operational 
logics. It can be shownTrom the strictness of  ~ that ff preserves orthocomple- 
mentation, hence orthogonality between operational logics. 

Finally, we shall make use of the following abuses of  notation. Suppose 
~r is a manual  and tz e 12(II(~4)). For x ~ U s e  we shall write p(x)  for p({x}) 
and /z (x )  for/z(p{x}).  We also write fx (respectively fA) forfq (respectively 
fr) when q = p ( x ) ,  x ~  ~_]~/ (respectively, r=p(A) ,  A an ~/event) .  

3. ULTIMATE STOCHASTIC  ENTITIES 

3.1. Definition. A stochastic entity is a pair S = ( ~ ( S ) ,  A(S)) consisting 
of  a manual  ~ ( S )  and a nonempty convex subset of  states A ( S ) c  
f~(H(~(S)) ) .  We denote the collection of all stochastic entities by 5v~. 

3.2. Definition. Suppose S, T ~ ~ .  An Av~ morphism from S to T is 
a pair of  maps q~=(1r162 satisfying (i) l~p~Moro(Yg(S),J//(T)) and 
=q>: A(S)--> A(T),  (ii) I f  x ~ [_)~(S)  and /~ c A(S); then (2q~(~))(lq~(x)) = 
~(x). 

We denote by ~ - M o r ( S ,  T) the set of  all Se~ morphisms from S to T. 
I f  q~ is an ~ morphism from S to T, we interpret ( ~ ( T ) ,  A(T)) as a 

stochastic entity that embodies all the information available from S and 
perhaps more. We think of A/(T) as a laboratory manual more elaborate 
than ~/(S) ,  containing the instructions for every operation in ~ ( S )  as well 
as new operations. Every state in A(S) has an extension to a state in A(T). 
We shall refer to T as an elaboration of S. Later we shall consider the case 
that 2~ is a surjection, reflecting the situation that the set of  states of  a 
system does not increase merely because we find new experiments to test 
for those states. For now, however, we allow that A(T) contains states of 
which one is unaware when one is considering the less elaborate stochastic 
entity S. 

Next we introduce partially ordered systems of stochastic entities. 

3.3. Definition. A pair (X, F) is an inductive system of stochastic entities 
if and only if the following are true: 

(i) X is a set of  stochastic entities and F is a set of 5e~ morphisms. 
(ii) I f  S, T~  X, then there exists at most one 5e~ morphism q~s,r 6 F 

from S to T. 
(iii) The relation -< on X defined by 

S < - T<:~3(PS, T E F n ~  Mor(S, T) 

is a partial ordering with respect to which X is a directed set. 
(iv) I f  S e X  and ~s,s~ F, then ~0s, s and 2r are identity maps. 
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We now consider an inductive system (X, F) and show how one can 
construct a stochastic entity that is a limit of  (X, F). We begin with the 
construction su, ggested in Fischer and Riittimann (1978a). 

Define X :=U{,dg(T)IT~X} and an equivalence relation on X A as 
follows: if x, y ~ X , then x - y if and only if there exists ~, tp c F with 
l~(x)  = l~b(y). Now for each x ~ X ,  denote by x~: the equivalence class 
determined by x and for each ~ ( T ) - e v e n t  A, TcX ,  let A t : =  {x$lx~ A}. 
Finally, define Xo:={ES;[E~M(~v) for some T~X}.  Note that U X 0  = 
X / - .  It is not difficult to verify that Xo is a manual. 

For TE X, we claim that the map x ~  x$, x ~ LJ J / (T )  is a strict morph- 
ism from M ( T )  to Xo. To see that it is strict, first suppose that x, y c U J / ( T ) ,  
x_Ly. Then 3EcM(T)  with x,y~E. Then x~, y$~ E$. We will have that 
x~;.l_y~, if we can show that they are unequal. But if x~ = y$, then 3 ~  ~ F 
with l~(X) = lCp(y), a contradiction of the fact that 1r is strict. Conversely, 
suppose x~-_l_y~;, xy c U M ( T ) .  Then 3R ~ X, R >- T and ~ / (R)  event A with 
x$, y$cA$, and lg'r,R(X), 1q~r,R(y)~A, Iq3T, R(X) ~ lq~T,R(Y). Since l~r.e is 
strict, we conclude that x_Ly. 

For T~X, the map x ~ x $  can be lifted to a map from I I ( ~ ( T ) )  to 
II(Xo). For q e I I ( ~  (T)),  we write q$ for the image of q under the lifted map. 

Now let A 1 := U { A ( S ) [ S ~  X}, and define an equivalence relation on 
~1 as follows: if S, T c  X and/x  c A(S), u 6 A(T), then/z  -= t, if and only if 
3q~, ~b 6 F with 2~(tx) = 20(u). Finally, define Ao:= A~/--=. We denote by/x$ 
the equivalence class determined by /x  ~ A~. 

We now claim that the members of Ao are states on 11(3/o). Suppose 
that S, T ~ X  and /x  ~A(S)  and q =p(A)~II(Jl(r)). Since X is directed, 
~R  ~ X with S, T -  < R. We define/x$(q+) : =  (2~S,R(I.t,))(I~T,R(q)). By straight- 
forward arguments using the fact that X is a directed set one can show that 
/x$(q$) is well defined and that /x$ is indeed a state on II(Xo). 

We thus have the following: 

3.4. Theorem. I f  (X, F) is an inductive system of stochastic entities, 
then (Xo, Ao) is a stochastic entity. 

In accord with our notation, we shall write 5e(X, F) for the stochastic 
entity with M(Se(X, F)) = Xo and A(f~(X, F)) = Ao. 

Now we begin construction of an "ult imate stochastic entity." Let S 
be a stochastic entity and define ~3(S):= {(Y, H)I(Y, H) is an inductive 
system of stochastic entities with Y finite and S ~ Y.} We write ~3 for ~ ( S )  
to simplify notation, and we call ~ the finite elaboration system for S. 

As it is defined here ~ ( S )  is not a set but a proper class. Strictly 
speaking, therefore, we are working in a system such as Von Neumann-  
Bernays-Godel  set theory (Drake, 1974). It would be possible to remain in 
Zermelo-Fraenkel  set theory, limiting the size of  ~ ( S )  by bounding the 
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set-theoretic rank of its elements, for example, but that is not necessary for 
our purpose. 

Next we define a partial order on ~.  

3.5. Definition. (Y, H)<-(Y ', H') if and only if( i )  y c  Y' and H c  H' ,  
(ii) If R, T~ Y with R -  < T, then ~ - r ~ H ' \ H .  

If S is a stochastic entity consisting of a manual of experiments and 
a set of states representing a physical system, then we think of an element 
of ~3(S) as a directed network of stochastic entities, each investigating the 
same system but in a variety of ways. For example, S might be the stochastic 
entity used by a particular research group R at a particular time t. Then 
for ( Y, H)  c ~ (S ) ,  Y might consist of stochastic entities for the investigation 
of the same system at different research groups and /o r  at different times. 
Some members of Y would be elaborations of  S, perhaps resulting from 
technological developments unavailable to group R at time t. If ( Y', H')-> 
(Y, H),  then Y' might extend Y in several ways: it could add elaborations 
resulting from synthesizing levels of expertise and technological develop- 
ments at several laboratories, or it might contain hypothetical levels of 
development in the future. It might also represent refinements in the model 
of the physical system. In this case, we are thinking of morphisms as 
interpretations, which is the way they were first introduced in Foulis and 
Randall (1981 a). 

3.6. Definition. A set ~ c ~ is called dense in ~ if for every ( Y, H)  ~ ~ ,  
3(Y',  H ' )~  ~ with (Y, H)<-(Y ', H'). 

3.7. Definition. A set ~ c !~ is called generic if (i) (~ is a directed set 
under -< and (ii) (~ n ~ ~ ~b for every ~ dense in (~. 

Suppose @ c !~ is generic. Let X = X((~) := U{ Y]3H ~ ( Y, H) c (~} and 
let F = F((~) := (.J{H[3 Y ~ ( Y, H)  c (~}. We claim that (X, F) is an inductive 
system of stochastic entities. We shall verify 3.3(ii) and leave the rest of 
the verification of 3.3 to the reader. Supposd ( Y, H),  ( Y', H')  c (~ and R c Y, 
T c  Y'. Suppose further that q~ ~ H and t06 H '  with q~, ~0~ 5e~-Mor(R, T). 
Since (~ is directed, 3(Z, K) c ~ with ( Y, H),  ( Y', H')  -< (Z, K). Then R, T c  
Z and ~p, ~b c K. So ~ = ~9. 

Now suppose (~ c ~ ( S )  is a generic set and (X(~) ,  F((~)) is the induc- 
tive system of stochastic entities obtained from ~ as above. Then by Theorem 
3.4 9 ~  9~ F((~)) is a stochastic entity, which we shall call the 
ultimate stochastic entity based on S and obtained from (~. 

If we consider ~ (S )  to represent all possible patterns of epistemological 
advances over S, then X ( ~ )  represents a complete, consistent history of 
our knowledge of the system under unvestigation by S. If Tl, T2 ~ X((~) are 
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two elaborations of S which are not comparable, we might consider them 
as reflecting the technological capacities of  two research groups which are 
not in communication. The existence in X(IN) of T3, T3 --- T1, T2, guaranteed 
by 3.7(i), represents a situation in which the knowledge of the two groups 
has been synthesized. 

Questions about the system under investigation by S are represented 
by dense sets. The elements of a dense set ~ are those stochastic entities 
which are capable of answering the question. If  the question is, for example, 
"Will outcomes x and y (not in S) be orthogonal?," then ~ would be all 
stochastic entities in which both x and y appear as outcomes. The property 
3.7(ii) of IN reflects our optimism that all such questions will be answered 
eventually. 

The question of the existence of a generic set IN naturally arises at this 
point. We shall remark briefly on this question and refer the reader to Cohen 
(1966) and Kunen (1980) for a more complete discussion. It is easy to show 
that if we carry out our mathematics inside a model gs of set theory, no 
generic set exists in 932. In the theory of "forcing," however, the machinery 
of Paul Cohen is used to construct a IN in a larger model (call it ~02[IN]) 
such that IN is "generic over ~ , "  that is, IN meets all dense sets in 93~, 
(though not all dense sets in 9J~[IN]). The ultimate stochastic entity S~ 
exists in 9)2[IN]. This is just what we would expect. If  indeed IN and SO(IN) 
represent the complete history of the world, then they cannot exist in it. It 
is reasonable, however, that there are larger worlds capable of containing 
both our world and its history. 

The ultimate stochastic entity depends on IN. The differences in such 
entities reflect the ways in which IN "answers" the questions posed by the 
dense sets. In general, such variations are local, and the global properties 
we examine in the next section hold for all ultimate stochastic entities. 

Our use of forcing is strongly reminiscent of Kripke's work in construct- 
ing models for intuitionistic mathematics. See, for example, Fitting (1969). 

4. PROPERTIES OF ULTIMATE STOCHASTIC ENTITIES 

One great advantage of generic sets is that while they exist only outside 
our model 93~, it is still possible to reason about them successfully inside IN. 

In this section we exhibit the properties of ultimate stochastic entities 
that establish them as natural objects to carry "ultimate" knowledge. 

We begin with the following: 

4. I. Lemma. Let S be a stochastic entity. Then there exists a stochastic 
entity T and 5e~ morphism ~v ~ SO~-Mor(S, T) such that (i) 2~: A(S) -> A(T) 
is a bijection, and (ii) for every g ~ [0, I(A(T))] there exists x e [._)(~(T)) 
with g=gx. That is, g ( v ) =  v(x) for all v~ A(T). 



Ultimate Stochastic Entities 335 

Proof Let D = { f~  [0, I(A(S))][3x c U ( J / ( S ) )  with f= f~} .  Associate 
with each f e  D a pair E s = {x~ Ys} of distinct elements such that (i) f ~  D O  
EynUJ/t(S)=c~, (ii) f o r f  g ~ D  w i t h / r  g, EfnEg=~b. 

Let ~ =~(S)w{EsIf~ D}. Let lq~: U ~ ( S ) ~ I , _ J ~  be the inclusion 
map. Clearly, ~ is a manual and lq~ is a strict morphism from ~ ( S )  to ~.  

Let us describe the logic I I (~ ) .  Let z~ be the lift of  1~0, so that 1~: 
I I ( ~ ( S ) ) ~  Yl(~) is an orthomodular poset isomorphism. It is not difficult 
to see that for every element q ~ I I (~ ) ,  either q ~ image (1~) or else 3J'~ D 
with q = p ( x  s) or q =p(yf). 

Define map 2~: A(S) ~ ~(17(~))  as follows: for tz ~ A(S), q~ I I (~ ) ,  

( / z ( r )  if q =  1if(r), r e I I ( ~ ( S ) )  
/ 

2q~(Ix)(q) = l f ( t x )  i fq=p(xs) , f~D 

( 1 -f(l~) i fq=p(yf) , fc  D 

Clearly, 2~0 is injective, and a straight forward computation shows that 
2q~ preserves convex combinations. That is, if  0 -  < t---1 and tzl, /-~z~ A(S), 
then 2~(ttz~ + (1 - t)/z2) = t2q~(tzl) + (1 - t)z~p (/~2). From this and the fact that 
A(S) is a cone base for V(A(S)), one can show that 2q~ has a unique extension 
to a linear map on all of V(A(S)) (Fischer and Rfittimann, 1978b). Also, 
the image of 2q~ is a convex subset of f~(II(~)). 

Now we define stochastic entity T = (J//(T), A(T)) by setting ./~/(T) = 
and A(T) = i m a g e ( ~ ) .  Further, we define 5e~ morphism ~:= (~,~q~). So 
far we have shown that ~0 ~ Moro(~(S) ,  ~ ( T ) )  and that ~o satisfies (i). 

Define map 2~*: V(A(T))*~ V(A(S))* by ~ 0 * ( g ) ( / z ) = g ( ~ ( / z ) )  for 
g ~ V(A( T))*, Ix ~ V(A(S)). As remarked above, we can extend zq~ to a linear 
map defined on V(A(S)) so that 2~o* is a linear map defined on V(A(T))*. 
Further, because ~q~[A(S)]=A(T), one establishes easily that z~o*(g)~ 
[0, I(A(S))] for all g ~ [0, I(A(T))]. 

To establish (ii), suppose g~ [0, I(A(T))]. If  2~o*(g)J~ D ,  then ~y ~  
U ( ~ ( S ) )  with 2~*(g) =fT. That is, (~q~*(g))(~z) = /z (y)  for all tz ~ A(S). So 
if u=~q~(~)~A(T) ,  then g(u)=2~*(g)(iz)=l~(y)=~o(tx)(~(y))= 
~,(~ ~ (y)). Thus, setting x = ~ q~ (y), we have that g = g,. In the case z ~o* (g) 6 D, 
let f =  ~ * ( g )  and consider x = x s ~ U ( J / ( T ) ) .  Then for t, = zq~(~) ~ A(T), 
g(~,) = ~o*(g)(iz) = f ( / z )  = ~q~(tx)(x) = ~,(x). So again, g = g~. �9 

We shall use the following notation in our next theorem. Let S be a 
stochastic entity and (~ a generic subset of the finite elaboration system 

= ~(S) .  Suppose ( Y, H)  ~ ~ ,  T ~ Y, and q ~ H(J//(T)). We denote by fo 
the element fq, ~ [0, l(A(9~(| Then for/z$ ~ A(b~ $) = tz$(q$). 
Note that fq$ is defined for each q, but that there is no definition o f f $  for 
arbitrary f ~  [0, I(A(T))]. Finally, for each f ~  [0, I(A(Se(~)))], we denote 
by )qA(T) the restriction o f f  to {/z$ ~ A(O~174 ~ A(T)}. 
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4.2. Theorem. Let So be a stochastic entity, ~ its finite elaboration 
system, and IN a generic subset of ~ .  Let S = 5r be the ultimate stochastic 
entity based on So and obtained from IN. Suppose f c [ 0 ,  I(A(S))] and 
T ~ X(IN). Then there exists R ~ X(IN) and x c U ( J / ( R ) )  such that (i) T<_ R 
and (ii))qA(R) =L*la(R). 

Proof L e t f c  [0, I(A(S))] and T e X(IN). Then there exists ( Yo, Ho) ~ IN 
with T c Yo. Define ~ = {( Y, H) c ~1 either (i) ~( Y', H') with ( Y', H') -> 
(Y,H),  (Yo, Ho) or (ii) (Yo, Ho)<-(Y,H) and 3 R E Y ,  r 1 6 2  
5e~-Mor( T, R) such that for eve ry fe  [0, I(A(R))], 3x ~ U(At (R)) satisfying 

f =fx}. 
We shall show that "~ is dense in gL Consider ( Y, H) ~ g?. If  it( Y', H') 

with ( Y', H') >- ( Y, H), ( Yo, Ho), then ( Y, H) c "~. So if ( Y, H) ~ ~ ,  consider 
(y ' ,  H')>_ (Y, H), (Yo, Ho). Since Y' is finite, it has an element Roe Y' 
which is maximal with respect to the order relation on ( Y', H'). By Lemma 
4.1, there exists stochastic entity R and morphism q~ e 5~-Mor(Ro, R) such 
that 2~P: A(Ro)-~A(R) is a bijection, and for every ge[0 ,  I(A(R)), Bxe  
U ( J / ( R ) )  with g = gx. Let Y"= Y u  {R} and H" be the closure of H u {q~} 
under composition. Since Ro is a maximal in Y', we have that ( Y", H") ~ ~.  
Further, ( Y", H") -> ( Y', H') >- ( Yo, Ho), ( Y, H). From this we conclude that 
( Y, H) <- ( Y", H") ~ ~ ,  and thus that ~ is dense in ~.  

Because IN is generic, we have that there exists ( Y, H) e IN c~ ~ .  Since 
IN is directed, there exists (Y', H') ~ IN with ( Y', H') >- (Y, H), ( Yo, Ho). 
Thus, ( Y, H) does not satisfy property (i) in the definition of ~ ,  so it must 
satisfy property (ii). Thus, there exists R e  YcX( IN)  and q ~ H c ~  
5r T, R) c F(IN) n 5~ R) such that for every g c [0, I(A(R))], 
3x ~ U ( J / ( R ) )  with g = gx. Then since f lA(R)c  [0, I(A(R))], we have that 
3 x c U ( J / t ( R ) )  with f[A(R)=fQ;lA(R). �9 

This theorem establishes a connection between general "effects" in the 
sense of Ludwig (1964), and effects based on single outcomes. In ultimate 
stochastic entities, every effect is "locally" an effect based on a single 
outcome. Further, if T is any stochastic entity embodying a stage of knowl- 
edge of a system, then every effect in an ultimate stochastic entity based 
on T is locally an effect based on an outcome in a stochastic entity R that 
is an elaboration of T.' Put this way, it becomes clear how generic sets 
describe an order of increasing knowledge about a system. 

It is useful to interpret the results above in terms of "counters." 
Riittimann (1984) points out that in a general stochastic entity (sO, A), every 
"counter" f 6 [ 0 ,  I(A)] may be approximated, in the weak* topology of 
V(A)*, by linear combinations of "propositional counters," fq, q ~ II(~/). 
So for tx c A, "one is tempted to interpret the value f(tx) as the long run 
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relative frequency with which the counter f is triggered for a system in state 
tx." The temptat ion is very strong, of  course, for counters fx, x ~ U ~ .  Hence 
the interpretational connection is made between the "bare-bones"  structure 
of the stochastic entity (sq, A) and the powerful geometric structure of  V(A)* 
important in Mielnik's approach to quantum mechanics (Mielnik, 1968). 
The thrust o f  Theorem 4.2 above in this framework, therefore, is that all 
counters are locally proposit ional counters when one is considering an 
ultimate stochastic entity. 

We shall now provide a brief introduction to "observables." More 
detailed explanations appear  in Cohen and Riittimann (to appear)  and 
Riittimann (to appear).  Let S be a stochastic entity. 

4.3. Definition. A Varadarajan observable to II(A/(S)) is a map ~ from 
the class B(R) of  Borel sets of  reals to H(At (S)) which satisfies the following: 

(i) o(4~)= 0 and o ( R ) =  1. 
(ii) U1, U2 c B( R ) and U, ~ U2 = & ~ ~( UI)• U2). 
(iii) {U,} is a pairwise disjoint sequence of members  of  B ( R ) ~  

o(UiU/)  = sup{o( U/)[i is a natural number}. 

4.4. Definition. The spectrum of a Varadarajan observable o is the set 

s(o) := O { C  ~ B(R)]C is closed and o ( C )  = 1.} 

I f  s(o) is a bounded subset of  the reals, we say that o is a bounded 
observable. 

Let o be a bounded observable with a = glb s(o) and b = lub s(o). The 
m a p / x  ~ A ( S ) ~  b Id d(/xoo) (Id is the identity map on the reals) is affine 
and bounded and so has an unique extension to a bounded linear functional 
on V(A(S)), which we call the expectational functional of ~ on A(S) and 
denote by ex(A(S), o). 

This brings us to a "local spectral theorem" for ultimate stochastic 
entities. 

4.5. Corollary. Let So be a stochastic entity, 98 its finite elaboration 
system, and IN a generic subset of  ~ .  Let S = S(IN) be the ultimate stochastic 
entity based on So and obtained from IN. Then for any T 6  X(IN) and any 
f c [ 0 , 1 ( A ( S ) ) ] ,  there exists R~X(IN)  with T<_R, and a bounded 
Varadarajan observable o to II(A//(R)) with f I A ( R ) =  ex(A(R), o). 

Proof Given T and f we know from Theorem 4.2 that there is an 
R6X(IN) and x c U J / / ( R  ) with T<-R and jqA(R)=fx$[A(R). For each 
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Borel set B in the reals, define 

I p(x)' i f l ~ B ,  0 e B  

o(B)  =~p(x)  if 1 ~ B, 0~ B 

if 0, I c B 

Then for /x~A(R),  0 q A ( R ) ) ( / x ) = / x ( x ) = S l d  d( /xoo) .  Since A(R) is a 
generating cone for V(A(R)), it is not difficult to verify that the last two 
equalities hold for all/.~ e V(A(R)). �9 

Many results have been obtained for entities satisfying spectral 
theorems. See, for example, Cohen and Riittimann (to appear), Fischer and 
Riittimann (1978b), and R/ittimann (1984). We shall see in the next section 
that these results will be available to us for many ultimate stochastic entities. 

5. STATE-STABLE SYSTEMS 

In this section we consider inductive systems in which elaborations do 
not introduce new states. Suppose S is a stochastic entity and it is believed 
that A(S) contains all the states possible for the system under investigation 
by S. By that we mean that if T is an elaboration of S with ~ c b~ T) 
then 2~: A(S) -> A(T) is a surjection. Thus, every state in A(T) is an extension 
of a state in A(S). As we mentioned earlier, this condition reflects the 
situation in which the set of  states of a system does not increase just because 
we find new experiments to test for those states. 

5.1. Definition. Let S be a stochastic entity. Define ~*  in the same 
manner as we defined the finite elaboration ~ with the stipulation that for 
any q~ ~ H, ( Y, H)  e ~*,  2~ is a surjection. A set f generic over ~*  is called 
state-stable. 

We shall show that for ultimate stochastic entities obtained from 
state-stable generic sets, the local properties established in Section 4 become 
global properties. 

5.2. Theorem. Let So be a stochastic entity, ~ its finite elaboration 
system, and (~ a state-stable, generic subset of  ~.  Let S = S((~) be the 
ultimate stochastic entity based on So and obtained from (~. If  f c  
[0, I(A(S))], then there exists an R ~ X((~) and x ~ [._]d~ (R) such thatf=fx$. 

Proof. Given f, we know from Theorem 4.2 that there exists an R E 
X((~) and x ~ [,.Jd~(R) with J~A(R) =fx$]A(R). 
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Consider any v ~ A(S). Then 3 Tl ~ X ( ~ )  and # ~ A(T1) with /x~: = v. 
Since X((~) is directed, 3 T2 ~ X(63) with R, T~ - T2. Since ~ is state-stable, 
3/z~ ~ A(R) with 2~p(R, T 2 ) ( ~ ) =  2q~(T~, T2)(/z). Then/z~:~ = tz~ = v. Hence 
f ( u )  =f(/zl~: ) =OqA(R))(/Zl) -- ( f ~ I A ( R ) ) ( ~ I )  = (f~:)(/z,~) -fx:~(u). �9 

We have in ultimate stochastic entities obtained from state-stable 
generic sets, therefore, that every effect is based on a single outcome. This 
is a very powerful condition obtained in a natural way. It is a condition 
one would expect to hold in an "ultimate" investigation structure that 
requires no further elaboration. 

An immediate consequence of Theorem 5.2 is a global "spectral 
theorem." 

5.3. Corollary. Let So be a stochastic entity, ~ its finite elaboration 
system, and N a state-stable, generic subset of ~.  Let S =  S((~) be the 
ultimate stochastic entity based on So and obtained from N. Then for every 
f c [ 0 ,  I(A(S))], there is a Varadarajan observable ~ to II(S) with f =  
ex(A(S), ~). �9 

This result gives an estimate of the size of the logic for an important 
class of ultimate stochastic entities. 

Let S be an ultimate stochastic entity. Cohen and Rfittimann (to appear) 
define a block in II(J//(S)) as a maximal Boolean subset. A block B is called 
A(S)-dense if for every/~ ~ A(S),/x is entirely determined by its values on 
B. It is shown that for a certain class of logics, the possession o fa  A(S)-dense 
block necessarily implies that the logic is classical. (A logic is called classical 
if it is Boolean.) It is of interest, therefore, when considering logics that 
are to be essentially nonclassical, to consider those that do not possess 
A(S)-dense blocks. The following theorem is obtained in Cohen and 
Rfittimann (to appear). 

5.4. Theorem (Cohen, Riittimann). Let (P, <-, ') be a nonclassical 
orthomodular poset with A a nonempty convex subset of  f~(P) such that 
no block in P is A-dense. If for every f ~  [0, I(A)], there is a bounded 
Varadarajan observable o to P with f =  ex(A, o), then P has uncountably 
many blocks. 

We have, therefore, the following consequence of  Corollary 5.3 above. 

5.5. Corollary. Under the hypotheses of  Corollary 5.3, if II(e//(S)) is 
nonclassical and contains no block which is A(S)-dense, then II(J//(S)) has 
uncountably many blocks. 

Hence ultimate stochastic entities with nonclassical logics are likely to 
be very large, as one might expect. 
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6. CONCLUSION 

Randall and Foulis (1983) argue that " . . .  the language of physics must 
be established on a sufficiently general and suitably primitive mathematical 
foundation if it is to continue to be successeul as an instrument of 
philosophical enlightenment." It is our view that ultimate stochastic entities 
meet the test of generality and primitivity. It is, therefore, satisfying that 
they also are mathematically rich enough to exhibit the properties so useful 
in studies which rely on functional analysis. 

In a sequel to this paper, we consider a physical entity (~,  ~), the basic 
structure in the general language developed in Foulis et al. (1983). We show 
that if ~ is the set of supports of all the states in a convex set A c ~ ( H ( J ) ) ,  
where ( J , A )  is an ultimate stochastic entity, then the cannonical map 
[. ]: I I (~ ) ->  ~ ( ~ ,  ~) is an isomorphism. Among other things, this implies 
that if ~ is not redundant, then every state has an "indicator outcome." In 
other words, to every state there corresponds an outcome that will be 
confirmed when tested if and only if the system is in that state. Such a 
plethora of  outcomes might be expected in an entity embodying "ultimate" 
knowledge of the system. This is what happens in orthodox quantum 
mechanics, of course. 
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